Одним из объектов трехмерного пространства являются поверхности. Это непрерывное, бесконечное множество точек, которые имеют определенную, строго установленную, зависимость между координатами. Основными инструментами трехмерного моделирования служат различные способы их отражения.

Линейчатые поверхности

В инженерной графике, начертательной геометрии есть метод, когда поверхность рассматривается как комплекс последовательных расположений линии, которая, подчиняясь определенному закону, перемещается в пространстве. Это кинематический способ, благодаря которому образуются геометрические объекты. Примером выступают технологические процессы, связанные с обработкой материала режущим инструментом. Плоскость получаемого изделия рассматривается как множество линий, эквивалентных (конгруэнтных) форме профиля резца режущего инструмента.

Для описания процесса образования используются два основных термина:

  1. Образующая – это подвижная линия. Она, перемещаясь, может иметь постоянную форму. Если это кривая — получается нелинейчатая поверхность. Она относится к I классу. Когда образующая представлена прямой, это ведет к формированию линейчатой поверхности (II класс).
  2. Направляющая – это неподвижная линия или плоскость, по ней движется образующая. Однозначно определить рассматриваемый объект возможно тремя линиями, задающими траекторию движения. Но, должно выполняться требование: две из трех линий задаются произвольно, третья – должна быть внутри конгруэнции, которая определяется уже выбранными двумя.

Линейчатые поверхности – понятие, используемое для описания класса тел, которые образуются путем беспрерывного перемещения в пространстве прямой.

Такое перемещение не является хаотичным, оно подчиняется определенному закону. Законом может выступать перемещение вдоль неподвижных линий. Иными словами, образующая все время занимает конкретное установленное положение.

Определены следующие два вида линейчатых поверхностей:

  • развертывающаяся;
  • неразвертывающаяся (косая).

В пределах класса эти объекты, образованные перемещением прямой линии, подразделяются на:

  1. Группы. Классификация на группы зависит от внешних условий движения образующей, то есть от количества направляющих.
  2. Виды. Деление на виды по каждой группе определяется внутренними характеристиками движения – формой и относительным положением траекторий, по которым движется прямая.

Их образование может происходить вращением или поступательным передвижением образующей прямой. Цилиндры, конусы – примеры геометрических тел, образованных пересечением линейчатой поверхности вращения с областью, называемой основанием. Гранные объекты формируются поступательным передвижением образующей вдоль ломанных траекторий. Так образуются призмы и пирамиды.

Развертывающиеся поверхности

Эти объекты важны для листопрокатного производства, текстильной промышленности, авиа- и автомобилестроения. Представление о них основывается на допущении, что они обладают гибкостью, но они нерастяжимы и несжимаемы. Под развертывающимися понимают области, которые, изгибая, можно совмещать с плоскостью без порывов, перегибов и складок. Таким образом получается развертка. Это свойство характерно для многогранных объектов и объектов, которые имеют ребра возврата.

Ребро возврата – это направляющая кривая в пространстве, которую касается прямая при передвижении. В системе отсчета развертывающаяся линейчатая поверхность определяется ребром возврата. Указанными характеристиками обладают: торс, а также его частные случаи: объекты, имеющие форму конуса, цилиндра, призмы, пирамиды.

Торс

Торсы используются при проектировании деталей и узлов в машиностроении. Образование линейчатых поверхностей, имеющих вид торса, происходит при передвижении образующей, которая во всех позициях проходит по касательной относительно ребра возврата. Оно, совместно с движущейся прямой, определяет торс в пространстве. Этот геометрический объект составляют две полости, граничащие по ребру возврата.

Торс

Цилиндрическая

Это особый вид торса. При этом ребро возврата переродилось в несобственную точку, удаленную на бесконечное расстояние. Построенная прямая образующая движется параллельно самой себе по установленной кривой. Чтобы определить цилиндрическую поверхность надо задаться: вектором перемещения и криволинейной траекторией движения.

Коническая

В ней ребро возврата преобразовалось в собственную точку, через которую, по определенной кривой, проходит образующая. Эта точка служит вершиной конуса. Такой объект может складываться из двух полостей. Для его определения задаются указанными точкой и кривой.

Призматическая и пирамидальная

Призматическая отличается от цилиндрической тем, что движение прямой происходит не по кривой траектории, а по ломанной. Ребро возврата преобразовалось в несобственную точку, которая находится на бесконечном расстоянии.

Пирамидальная и конусная различаются формой траектории движения прямой. У конусной — траектория движения криволинейная, у пирамидальной – ломанная.

У перечисленных видов две смежные прямые могут:

  • пересекаться (торс, коническая, пирамидальная);
  • быть параллельными (цилиндрическая, призматическая).

Чтобы получить уравнение поверхности развертывающейся надо решить систему двух уравнений:

  1. уравнения образующей.
  2. уравнения направляющей.

Призма и призматическая поверхность

Рассмотренные объекты могут быть замкнутыми, если траектория имеет форму окружности или замкнутого многоугольника.

Неразвертывающиеся или косые поверхности

Их возникновение часто обусловлено передвижением прямолинейной образующей вдоль траектории, сформированной тремя направляющими. Они конкретно определяют закон перемещения и бывают прямыми или кривыми. Есть частные случаи, когда траектория движения определяется:

  • двумя направляющими и произвольной плоскостью;
  • направляющими произвольной формы и плоскостью параллелизма (например, область проекции).

Направляющая плоскость замещает одну из линий траектории. С ней движущаяся прямая составляет постоянный угол.

Если этот угол равен нулю, образующая скользит параллельно направляющей области. Она получила название «плоскость параллелизма». Неразвертывающиеся поверхности, ей определяемые, называются косыми.

Примеры таких объектов: цилиндроид, коноид, гиперболический параболоид. Их основные характеристики приведены в таблице.

ВидОпределители

(наряду с плоскостью параллелизма)

ХарактеристикаНекоторые области применения
Цилиндроид2 кривые направляющиеИзобразить образующие на комплексных чертежах можно так:

1.Параллельно параллелизму провести серию плоскостей.

2.Определить точки, в которых кривые направляющие цилиндроида пересекаются с плоскостями.

Если за параллелизм принять одну из плоскостей уровня, что облегчает построение, то линии будут соответствовать линиям уровня.

Проектирование габаритных, большого диаметра, воздуховодов
Коноид2 направляющие:

·        криволинейная;

·        прямолинейная

1.   Особый случай цилиндроида.

2.   Прямой коноид имеет направляющую прямолинейную, расположенную под прямым углом к области параллелизма.

Гидротехническое строительство, при конструировании опор мостов
Параболоид гиперболический (синонимично понятию косой плоскости)2 пересекающиеся прямые направляющие1.    Изображается как несколько прямых согласно закону: образующая должна пересекать направляющие и проходить параллельно установленной области параллелизма.

2.    При пересечении определенными плоскостями в сечениях получаются гиперболы и параболы.

При разработке конструкций гидротехнических сооружений, дорог, откосов, шлюзов, каналов, крыльев ветряков

Линейчатые поверхности представляют собой математические абстракции, благодаря которым можно получить представление о свойствах предметов.

Их моделирование, математическое, геометрическое описание позволяют проектировать различные тела и конструкции в машиностроении, архитектуре. Современные программы компьютерного проектирования, например КОМПАС 3D, облегчают и автоматизируют процесс моделирования таких объектов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

 
Порекомендуйте эту статью:
Оцените статью:
Очень плохоПлохоСреднеХорошоотлично (голосов: 5, в среднем: 5,00 из 5)
Загрузка...
 
 
Наверх!

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам:

Подпишитесь на нашу рассылку! Будьте в курсе новинок, современных трендов, технологий!